Exercise 32

Use implicit differentiation to find an equation of the tangent line to the curve at the given point.

$$
y^{2}\left(y^{2}-4\right)=x^{2}\left(x^{2}-5\right), \quad(0,-2), \quad(\text { devil's curve })
$$

Solution

The aim is to evaluate y^{\prime} at $x=0$ and $y=-2$ in order to find the slope there. Differentiate both sides of the given equation with respect to x.

$$
\begin{gathered}
\frac{d}{d x}\left[y^{2}\left(y^{2}-4\right)\right]=\frac{d}{d x}\left[x^{2}\left(x^{2}-5\right)\right] \\
{\left[\frac{d}{d x}\left(y^{2}\right)\right]\left(y^{2}-4\right)+y^{2}\left[\frac{d}{d x}\left(y^{2}-4\right)\right]=\left[\frac{d}{d x}\left(x^{2}\right)\right]\left(x^{2}-5\right)+x^{2}\left[\frac{d}{d x}\left(x^{2}-5\right)\right]} \\
{\left[(2 y) \cdot \frac{d}{d x}(y)\right]\left(y^{2}-4\right)+y^{2}\left[(2 y) \cdot \frac{d}{d x}(y)\right]=(2 x)\left(x^{2}-5\right)+x^{2}(2 x)} \\
(2 y) \cdot\left(y^{\prime}\right)\left(y^{2}-4\right)+y^{2}(2 y) \cdot\left(y^{\prime}\right)=4 x^{3}-10 x \\
{\left[2 y\left(y^{2}-4\right)+2 y^{3}\right] y^{\prime}=4 x^{3}-10 x}
\end{gathered}
$$

Solve for y^{\prime}.

$$
y^{\prime}=\frac{4 x^{3}-10 x}{2 y\left(y^{2}-4\right)+2 y^{3}}
$$

Evaluate y^{\prime} at $x=0$ and $y=-2$.

$$
y^{\prime}(0,-2)=\frac{4(0)^{3}-10(0)}{2(-2)\left[(-2)^{2}-4\right]+2(-2)^{3}}=0
$$

Therefore, the equation of the tangent line to the curve represented by $y^{2}\left(y^{2}-4\right)=x^{2}\left(x^{2}-5\right)$ at $(0,-2)$ is

$$
y+2=0(x-0)
$$

Below is a graph of the curve and the tangent line at $(0,-2)$.

